

DEPARTMENT OF MICROBIOLOGY TEACHING PLAN GDCR 2023-24

Govt. Digvijay Autonomous P.G. College, Rajnandgaon, C.G.

Department of Microbiology

Teaching Plans

ASSISTANT PROFESSOR – SAVITA CHANDRAWANSHI

2023-24

B.S	B.Sc. I Semester(DSC) Microbial World and Principles of Microbiology	
July	History of microbiology and introduction to the microbial world. Germ theory of disease, Development of various microbiological techniques and golden era of microbiology.	
Aug	Contributions of Antony von Leeuwenhoek, Louis Pasteur, Robert Koch, Alexander Fleming, Selman A. Waksman and Edward jenner. Characteristics of microorganisms, Baltimore classification. Binomial Nomenclature, Whittaker's five kingdom and Carl Woese's three kingdom classification systems and their utility.	
Sept	General characteristics of Cellular microorganisms, wall-less forms - MLO (mycoplasma) with emphasis on distribution and occurrence, morphology, and economic importance.	
Oct	Methods of studying microorganism; Staining techniques: simple staining, Gram staining, negative staining and acid- fast staining. Sterilization techniques (physical & chemical sterilization).	
Nov	Culture media & conditions for microbial growth. Pure culture isolation: Streaking, serial dilution and plating methods; cultivation, maintenance and preservation of pure cultures	
Dec	Beneficial and harmful microbes and their role in daily life. Concept of disease in plant and animal caused by microorganism.	

B	B.Sc. II Semester(DSC) Bacteriology and Virology	
Jan	Morpholgy and ultrastructure of Bacteria:Cell size, shape and arrangement, capsule, flagella, fimbriae and pili. Cell-wall: Composition and detailed structure of Gram-positive and Gram- negative cell walls, Cell Membrane: Structure, function	
Feb	chemical composition of bacterial and archaeal cell membranes. Cytoplasm: Ribosomes, mesosomes, inclusion bodies, nucleoid. Endospore. Nutritional requirements in bacteria and nutritional categories. Physical methods of microbial control: heat, low temperature, high pressure, filtration, desiccation, osmotic pressure, radiation.	
March	Brief outline of discovery of viruses, classification of viruses, Distinctive properties of viruses, morphology and ultrastructure, capsids and their arrangements, types of envelopes and their composition, viral genome, their types and structures. Virus related agents (viroid's, prions).	
April	Multiplication and Economic importance of viruses (TMV, Influenza virus and T4 – Phage).	

M.Sc. MICROBIOLOGY, SEMESTER I

Paper- I : Bacteriology	
Aug	Morphology and ultrastructure of bacteria, morphological types, archaebacteria, Gram negative and positive eubacteria, Actinomycetes and L-forms. Cell wall synthesis, antigenic properties. Capsule: types, composition and function. Cell membranes: structure, composition and properties.
Sept	Structure and functions of flagella, pili, gas vesicles, chromosomes, carboxysomes, magnetosomes, phycobilisomes, endospore. Cell division, Reserve food material, polyhydroxy butyrate, polyphosphate granules, oil droplets. Cyanophycean granules and Sulphur inclusions.
Oct	Structure and functions of flagella, pili, gas vesicles, chromosomes, carboxysomes, magnetosomes, phycobilisomes, endospore. Cell division, Reserve food material, polyhydroxy butyrate, polyphosphate granules, oil droplets. Cyanophycean granules and Sulphur inclusions.
Nov	Classification of microorganisms: Basis of microbial classification, Haeckel's three kingdoms concept, Whittaker's five kingdom concept, three domain concepts of Carl Woes. Salient feature of bacterial classification according to the Berge's manual of determinative bacteriology.

M.Sc. MICROBIOLOGY, SEMESTER III

Paper- I : CELLULAR MICROBIOLOGY	
July	Emergence of cellular microbiology: Cellular biology underlying prokaryotic and eukaryotic
	interaction, ultrastructure, genome expression, pathogenicity islands.
Aug	Organization of chromosome: Structure of chromosome, centromere and Telomere,
U	chromosome banding. DNA packaging, Genome evolution in microbes. Phylogenetic trees.
Sept	Eukaryotic signaling mechanisms: Signaling Via G protein, MAP Kinase pathway, insulin signaling,
•	cyclins and cyclin dependent kinase. Prokaryotic signaling: quorum sensing and bacterial
	pheromones intracellular signaling.
Oct	Infection and cell:cell interaction Bacterial adherence: basic principle, effect of adhesion on
	bacteria, effect of adhesion on host cells. Bacterial invasion of host cells, Survival after invasion.
	Transport by vesicle formationExocytosis, Endocytosis. Protein toxins: agents of diseases and
	examples.
Nov	Immune response to bacterial infection: Innate response, complement, acute phase protein.
	Macrophages: cytokines and interferon. Acquired immune response: cell mediated immune
	response, humoral response. Cell cycle, Apoptosis, Oncogenes.

M.Sc. MICROBIOLOGY, SEMESTER II

Paper – III: Microbial Physiology	
Jan	Basic aspects of bioenergetics: entropy, enthalpy, electrons carrier. Artificial electron donors,
	inhibitors, energy bond, phosphorylation. Brief account of photosynthetic and accessory
	pigments: chlorophyll, bacteriochlorophyll, rhodopsin, carotenoids, phycobiliproteins.
Feb	Autotrophy: Carbohydrate anabolism, oxygenic and an-oxygenic photosynthesis, autotrophic
	generation of ATP, fixation of CO2, Calvin cycle, C3 and C4 pathway, Chemolithotrophy, oxidation
	of sulphur, iron, hydrogen and nitrogen. Methanogenesis, luminescence.
March	Respiratory metabolism: Embden Mayer Hoff Parnas pathway, Entner Doudroff pathway,
	Glyoxalate pathway. Krebs cycle, Oxidative and substrate level phosphorylation, Reverse TCA
	cycle, Gluconeogenesis, Pasteur effects. Fermentation of carbohydrates: homo and heterolactic
	fermentation.
April	Nitrogen metabolism: Biological nitrogen fixation, mechanism of nitrogen fixation, Ammonia
L.	assimilation. Synthesis and degradation of aromatic amino acids: Tryptophan, Tyrosine,
	Phenylalanine. Synthesis of polysaccharides: peptidoglycan, biopolymers as cell components.

M.Sc. MICROBIOLOGY, SEMESTER IV

Paper – III: FERMENTATION & MICROBIAL TECHNOLOGY	
Jan	Metabolic pathways and metabolic control mechanisms. Primary and secondary metabolites.
	acetone, butanol and glutamic acid.
Feb	Microbial production of therapeutic compounds (β-lactam, aminoglycosides, Ansamycins
	(Rifamycin). Biotransformation of steroids, vitamin B12 and riboflavin fermentation. Bioreactors
	types, basic designs and uses. Bio fermenters uses.
March	Modern trends in microbial production of bioplastics (PHB, PHA), bioinsectices (thuricide).
	Biopolymer (dextran, alginate, xanthan). Bio-fuels. Biofertilizers (nitrogen fixer Azotobacter,
	Phosphate solubilizing microorganisms). Single Cell Protein and production of biological weapons
	with reference to anthrax.
April	Production of bioethanol from sugar, molasses, starch and cellulosic materials. Downstream
•	processing: Removal of microbial cells and solid matter, precipitation, filtration, centrifugation,
	disintegration of cells, extraction methods, concentration methods, purification and resolution of
	mixtures, drying and crystallization. Intellectual Property Rights (IPR), Patents and Copyrights.

HE AD Deptt. of Microbiology Govt. Digvijay College Rajnandgaon (C.G.)

Govt. Digvijay Autonomous P.G. College, Rajnandgaon (C.G.)

Department of Microbiology

Teaching Plan

GUEST LECTURER- PRAGATI NONHARE

SESSION- 2023-2024

	B.SC. I SEM MICROBIOLOGY (G.E.)
AUG	Introductiontomicrobialworld,Physiochemical and biological characteristics; Characteristics of Acellular microorganisms (Viruses); Baltimore classification, general structure with special reference to viroids and prions.Whittaker's five kingdom classification systems. Difference between prokaryotic and eukaryotic microorganism.
SEPT	General characteristics of Cellular microorganisms, types - archaebacteria, eubacteria, wall-less forms - MLO (mycoplasma and spheroplasts) with emphasis on distribution and occurrence, morphology, mode of reproduction and economic importance. Structure, reproduction and economic importance of Mycoplasma.
OCT	Characteristics, occurrence, thallus organization and classification of Algae. Cyanobacteria - occurrence, thallus organization, cell ultra-structure, reproduction and economic importance.
NOV	General characteristics of fungi including habitat, distribution, nutritional requirements, fungal cell ultrastructure, thallus organization and aggregation, mode of reproduction and Economic importance of fungi .

	B.SC. III YEAR MICROBIOLOGY
AUG	AIR MICROBIOLOGY Basics of Aerobiology, Microbes in atmosphere, source of microorganism in air, droplet nuclei, infectious dust, and bio- aerosol. Factors affecting microbial survival in the air. Sampling, collection and isolation of microbes from air.
SEPT	 WATER MICROBIOLOGY Basic concept, water zonation, eutrophication, microbial community in natural water. Determining the quality of water quality of water- bacteriological evidence for fecal pollution, indicator of fecal pollution. Water purification methods. Disinfection of potable water supply.
OCT	SOIL MICROBIOLOGYSoil as an environment culturemedium,microbes of soil. Brief account ofmicrobialinteractions-symbiosis,mutualism,commensalism,competition, predation, parasitism.Microbiological examination of soil. Rhizosphere-concept and role of microbes, rhizosphere and nonrhizosphere micro-flora. Mycorrihiza.
JAN FEB	 INDUSTRIAL MICROBIOLOGY Introduction and brief history and scope, important microbes in various industries. Fermentation- definition, types- Aerobic and anaerobic, Batch and SSF. Important products bread, cheese, vinegar, fermented food involving microbes. Microbial cells as food. SCPmushroom cultivation, production of alcohol and fermented beverages, beer and Wine. AGRICULTURE MICROBIOLOGY History of Agricultural Microbiology; Microbes and their importance in maintenance of soil, Biogeochemical cycles, role of microbes in maintain the fertility of soil.
MAR	Biofertilizers-Bacterial, azotobacter and vermiform compost. Soil microorganism- association with

vascular plantsphyllosphere, Rhizobium, Rhizoplane associative nitrogen fixation.

I

	B SC II SEM MICROBIOLOGY (DSC)
	B.SC. II SEMI WICKOBIOLOGI (DSC)
JAN	Morpholgy and ultrastructure of Bacteria:Cell size, shape and arrangement, capsule, flagella, fimbriae and pili. Cell-wall: Composition and detailed structure of Gram-positive and Gram- negative cell walls, Cell Membrane: Structure, function and chemical composition of bacterial and archaeal cell membranes. Cytoplasm: Ribosomes, mesosomes, inclusion bodies, nucleoid. Endospore.
FEB	Nutritional requirements in bacteria and nutritional categories. Physical methods of microbial control: heat, low temperature, high pressure, filtration, desiccation, osmotic pressure, radiation.
MAR	Brief outline of discovery of viruses, classification of viruses, Distinctive properties of viruses, morphology and ultrastructure, capsids and their arrangements, types of envelopes and their composition, viral genome, their types and structures. Virus related agents (viroid's, prions).
APR	Multiplication and Economic importance of viruses (TMV, Influenza virus and T4 –Phage). reproduction of bacterial, Growth Phases of Bacteria.

	B.SC. II SEM MICROBIOLOGY (G.E.)
JAN	Soil Microbiology: Soil as Microbial Habitat, Soil profile and properties, Soil formation, Diversity and distribution of microorganisms in soil. Microbial Activity in Soil and Green House Gases- Carbon dioxide, methane, nitrous oxide, nitric oxide – production and control.

FEB	Microbial Control of Soil Borne Plant Pathogens: Biocontrol mechanisms and ways, Microorganisms used as biocontrol agents against Microbial plant pathogens, Insects, Weeds
MAR	Biofertilization,Phytostimulation,Bioinsecticides: Plant growth promoting bacteria,biofertilizers– symbiotic (Bradyrhizobium, Rhizobium, Frankia), Non Symbiotic (Azospirillum,Azotobacter,Mycorrhizae,MHBs, Phosphatesolubilizers,algae).
APR	biogas, biofuels – advantages and processing parameters. GM crops: Advantages, social and environmental aspects, Bt crops, golden rice.

	B.SC. IV SEM MICROBIOLOGY (SEC)
JAN	Fermented Foods: Definition, types, advantages and health
	benefits, fermented foods used by Common public,
	domestication.
FEB	Milk Based Fermented Foods: Dahi, Yogurt, Buttermilk (Chach)
	and cheese: Preparation of inoculums, types of microorganisms
	and production process.
MAR	Grain Based Fermented Foods: Soy sauce, Bread, Idli and Dosa:
	Microorganisms and production process, Preparation and
	preservation.
APR	Fermented Meat and Fish:Types, microorganisms involved,
	fermentation process, Probiotic Foods: Definition, types,
	microorganisms and health benefits

	M.SC. I SEM MICROBIOLOGY (VIROLOGY)
AUG	 Brief outline of discovery of viruses, classification and nomenclature of viruses. Distinctive properties of viruses, morphology and ultra-structure, capsids and their arrangements, types of envelopes and their composition, viral genome, their types and structures.

	Virus related agents (viroid's, prions).
SEPT	Cultivation of viruses: embryonated eggs, experimental animals
	Cell culture: primary and secondary cultures, suspension cultures and
	monolayer cultures and transgenic system
	Assay of viruses: physical and chemical methods (protein, nucleic acid, radioactive tracers, electron microscopy), infectivity assay (plaque method, end point method).
ОСТ	Bacteriophages: structural organization, life cycle:one step growth curve, eclipse phase, phage production, lysogenic cycle, application in bacterial genetics.
	Brief details of MI3, Mu, T3 & T4.
	Plant Viruses: structural organization, life cycle, (TMV, CMV and PVX), pathogenicity, symptoms, transmission and prevention of plant viral diseases, control of vectors.
NOV	Animal viruses: structural organization, lifecycle, pathogenicity, diagnosis, prevention and treatment of RNA viruses Orthomyxo, Paramyxo, Rota and HIV virus.
	DNA viruses; Pox, Adeno and Hepatitis virus.
	Viral vaccines (conventional, genetic recombinant, new generation vaccines including DNA vaccines, interferon and antiviral drug.

M.SC. III SEM MICROBIOLOGY (MEDICAL MICROBIOLOGY)

AUG	Normal microbial flora of human body: role of the resident flora.
	Host microbe interaction, Infection and Infectious Process-Routes of transmission of microbes in the body.
	Sources of infection for man, Vehicles or reservoirs of infection .Mode of
	spread of infection. Pathogenesis: infectivity and Virulence. Four lines of
	defense mechanism

SEPT	Classification of pathogenic bacteria: Staphylococcus, Streptococcus, Pneumococcus, Neisseria, Corvnebacterium, Bacillus, Clostridium, Non-
	sporing Anaerobes.
	Organisms belonging to Enterobacteriace, Vibrios, Yersinia, Bordetella,
	Brucella, Mycobacteria, Spirochaetes, Actinomycetes, Rickettsiae, Chlamdiae.
ОСТ	General properties of viruses. viruses host interactions: pox viruses, herpes virus, adeno viruses, picarno viruses, orthomyxo viruses, paramyxo viruses, arbo viruses, rhabdo viruses.
	Hepatitis viruses, oncogenic viruses, human immunodeficiency viruses (AIDS). Protozoal diseases: Malaria and ameabiosis.
NOV	 Fungal infections: Dermatophytes, dimorphic fungi, opportunistic fungal pathogens, their description, Classification and Laboratory diagnosis. Fungal Diseases – Mycoses systemic and subcutaneous, Pneumocystis, Blastomycosis, Dermatophytosis, Aspergillosis.
	Nosocomial infection: common types of hospital infections, their diagnosis and control.
	Laboratory control and anti-microbial therapy.

M.SC. III SEM MICROBIOLOGY (FOOD MICROBIOLOGY)

AUGFood as substrate for microorganisms: Important micro-organisms in food
microbiology - Molds, Yeasts and Bacteria (General characteristics and
importance).Principles of food preservation: Asepsis (anaerobic conditions, high
temperatures, low temperature, drying).Factors influencing microbial growth in food: Extrinsic and intrinsic
factors; Chemical preservatives and food additives, Canning, processing
for Heat treatment - D, Z, and F values.

SEPT	Contamination and Spoilage: Cereals, sugar products, vegetables, fruits, meat and meat products, Milk and Milk products, Fish and sea foods, poultry-spoilage of canned foods. Detection of spoilage and characterization. Food control agencies and its regulations.
OCT	 Food-borne infections and intoxications: Bacterial and non-bacterial with examples of infective and toxic types (Brucella, Bacillus, Clostridium, Escherichia, Salmonella, Staphylococcus, Vibrio, Yersinia; Nematodes, Protozoa, algae, fungi and viruses). Application of Microbial enzymes in food industry.
NOV	 Food Produced by Microbes: Fermented foods, microbial cells as food (single cell proteins) Bioconversions: Mushroom cultivation, Production of alcohol. Fermented beverages (beer and wine). Microbiology of fermented milk products (acidophilus milk, yoghurt). Role of microorganisms in beverages– tea and coffee fermentations. Vinegar Fermentation.

	M.SC. II SEM MICROBIOLOGY (GENETICS)	
JAN	DNA damage: types of DNA damage (deamination, oxidation, alkylation, pyrimidine dimers).	
	Repair pathways (methyl directed mismatch repair, very short patch repairs, nucleotide excision repairs, base excision repairs, recombination repairs, and SOS system).	
	Gene as a unit of Mutation, types of mutagens, genetic analysis of mutants, types of mutations and their origin. Ame's test	
FEB	Gene as a unit of recombination, molecular nature of recombination. Gene transfer mechanism: Transformation, Transduction, Conjugation, Transfection, Lysogeny and their applications. Genetic analyses of Bacteria and Yeast. DNA Library	

MAR	Plasmids and phage vectors their types and uses in genetic analysis as vector for gene cloning, replication of selected plasmids, compatibility.
	Recombinant DNA Technology: foreign DNA, Enzymes needed, selection of vectors, Transfer of foreign DNA in to vector, Transfer of recombinant DNA to host cell (Tail ligation and linker used method), selection and screening of recombinant DNA. Transposons and their uses in genetic analysis. Molecular markers: RFLP, RAPD, SNP and AFLP. Isolation of mutants.
APR	 Polymerase Chain Reaction. Genetics of phage: genetic recombination in phages, effect of parental ratio, reciprocity. T4 phage structure, life cycle, genetic map and DNA replication. λ phageDNA structure, genetic organization and life cycle of λ.

M.SC. II SEM MICROBIOLOGY (BIOSTASTICS)	
JAN	Introduction: Definition, Basic concepts, sample and population, measurement scales, statistical inferences and parameters.
	Presentation of data: Tabulation, Frequency distribution, Graphical presentation of data and interpretation.
	Measures of central tendency (mean, median, mode), Measures of dispersion (range, mean deviation, standard deviation and error).
FEB	Correlation: Types and Methods, correlation coefficient and its significance.
	Regression analysis: linear regression, regression coefficient, uses of regression analysis, difference between correlation and regression.
	Experimental designs: Basic concepts, principles, types and significance
MAR	Tests of significance: Chi-Square, characteristics, applications. Student's t Test, properties and applications.

	Analysis of Variance (ANOVA): Introduction, procedure, multiple
	comparisons.
	Statistical quality control: introduction types and advantages
	Statistical quality control. Infoduction, types and advantages.
	Introduction to computer computer applications basics organization DC
APK	introduction to computer. computer applications, basics, organization, PC,
	Mainframes and Super Computers.
	Hardware and Software, MS office, Word processing, Working in Power
	point creating presentations
	point, creating presentations.
	Introduction to Internet: Basics of internet e-mailing search engines-
	and output to internet. Dusies of internet, e manning, search engines
	Google and Yahoo.

M.SC.	IV SEM MICROBIOLOGY (FERMENTION
TECHN	(OLOGY)
JAN	Metabolic pathways and metabolic control mechanisms.
	Primary and secondary metabolites.
	Industrial production of citric acid, lactic acid, enzymes (alpha-amylase,
	lipase, proteases), acetone, butanol and glutamic acid.
FEB	Microbial production of therapeutic compounds (β-lactam,
	aminoglycosides, Ansamycins (Rifamycin).
	Biotransformation of steroids, vitamin B_{12} and riboflavin fermentation.
	Bioreactors types, basic designs and uses. Bio fermenters uses.
MAR	Modern trends in microbial production of bioplastics (PHB, PHA),
	bioinsectices (thuricide).
	Biopolymer (dextran, alginate, xanthan). Bio-fuels.
	Biofertilizers (nitrogen fixer Azotobacter, Phosphate solubilizing
	microorganisms).
	Single Cell Protein and production of biological weapons with reference to
	anthrax.
APR	Production of bioethanol from sugar, molasses, starch and cellulosic
	materials.

Downstream processing: Removal of microbial cells and solid matter,
precipitation, filtration, centrifugation, disintegration of cells, extraction
methods, concentration methods, purification and resolution of mixtures,
drying and crystallization.
Intellectual Property Rights (IPR), Patents and Copyrights.